
134 Informatica Economică vol. 15, no. 4/2011

RAD Applied in the Context of Investment Banking
Trading Systems Development

Iosif ZIMAN

Nomura Principal Investments Hong Kong Ltd.
iosif.ziman@nomura.com

RAD as a methodology for implementing information systems has been used in a broad range
of domains utilizing technology as an informational backbone but perhaps one of the main
areas where this approach has been proven to be a natural fit has been in the investment
banking (IB) industry, most notably when applied to trading systems. This paper introduces
some of the main tenants of RAD development and focuses on a number of case studies where
RAD has proven to be an extremely suitable method for implementing solutions required in
the IB industry as well as explaining why RAD may be more successful than other classic de-
velopment methods when applied to IB related solutions.
Keywords: RAD, Information Systems, Investment Banking, Trading Systems

Introduction
RAD has its origins in rapid prototyping

approaches and was first formalized by
James Martin (1991). He believed that it re-
fers to a development life cycle designed for
high quality systems with faster development
and lower costs than the traditional lifecycle
provided. Martin’s work followed up on ear-
ly concepts such as Barry Boehm’s spiral
model, Tom Gilb’s evolutionary life cycle,
and Scott Shultz’s rapid iterative productive
prototyping (RIPP). The prototyping method
used in rapid application development allows
the developer to rapidly identify the types of
data and process models required to meet the
application requirements. However, because
of the shorter development time, certain
compromises in performance and quality are
difficult to avoid. By the mid 1990s the def-
inition of RAD came to be used as a cover
term to include a number of methods, tech-
niques and tools by a large number of differ-
ent vendors applying their own interpretation
and approach. This rather unstructured ad
hoc evolution of RAD means that the ra-
tionale behind its use is not always clear. It is
perceived as an IS system methodology, a
method for developers to change their devel-
opment processes or as RAD tools to im-
prove development capabilities (Beynon-
Davies 1999, Whitten 2007). It could be
found that on a number of occasions RAD
has been considered one of the delivery

methods encompassed in Agile development
methodologies. According to circulated liter-
ature RAD centers on prototyping and user
involvement stages where the analysis, de-
sign, build and test phases of the develop-
ment life cycle are compressed into a se-
quence of short, iterative development cy-
cles. This had been seen as a remedy to per-
ceived flaws of the traditional lifecycle be-
cause the iterative approach encourages ef-
fectiveness and self-correcting as each in-
crement is refined and improved. To achieve
this, a RAD approach necessitates the collab-
oration of small and diverse teams of devel-
opers, end users and other stakeholders (Mar-
tin 1991, Tudhope 2001, Beynon-Davies
1996, Elliott 1997). It is sometimes useful to
consider that RAD projects may be distin-
guished in terms of intensive and non-
intensive forms. A non-intensive approach to
RAD refers to projects where system devel-
opment is spread over a number of months
involving incremental delivery compared to
the intensive RAD where project personnel
works somewhat secluded to achieve set ob-
jectives with a 3 - 6 week timeframe
(Beynon-Davies 1999, 2004).
For a description on the reasons why RAD is
well suited to development of IS in invest-
ment banks and more specifically trading
systems a brief description of the develop-
ment process including analysis, planning as
well as development, testing and integration

1

Informatica Economică vol. 15, no. 4/2011 135

is achieved within such organizations. It is
important to understand that while the con-
trary may be desirable in fact an IB trading
environment tends to be a hard to capture us-
er functional environment and as such speci-
fications tends to be difficult to pin down and
more so have accepted by mail stakeholders,
this being often the time one of the main rea-
sons why projects within such organizations
may be found to fail repeatedly, despite the
need for the functionality that they would of-
fer once delivered. There are multiple rea-
sons why this happens and we can just men-
tion some of them. The trading environment
is a highly dynamic one and tends to be pop-
ulated on the user side by people who have
daily responsibilities and for whom system
development is not always at the core of their
focus at all times. This means that only spo-
radic attention may be expected from the
people best placed to offer requirements,
which means that from the very beginning
there is a clear case of scope creep. At the
same time these same people are in need of
new functionality that they demand but yet
have a difficult time in focusing on specify-
ing exactly what they require to a level that
can then be implemented based on further
analysis. At the same time on the analysis
and specification definition phase the large
number of people that need to be involved
for implementing significantly large infor-
mation systems tends to require a relatively
long period of time simply to define require-
ments, which in fact may have changed be-
fore reaching the development phase. As a
result often times such institutions are faced
with potentially low productivity cycles de-
signed simply to achieve a consensus on re-
quirements. It is important to understand that
quite often developments in this area border
research and development activities rather
than simple problem solving solutions deliv-
ery; as a result the time required could be
multiplied by orders of magnitude. One gen-
eral problem is that many users who are in-
volved in the specification phase only really
become proficient in providing feedback
once they see a first level implementation
that is somewhat functional and will then

tend to give input on methods of evolving or
improving (Gerber, 2004). This is where
RAD comes in and offers developers the
chance to promote a controlled, structured
but flexible development methodology aimed
at providing incremental delivery. This gen-
erally involves a series of time-boxed mini
iterations and a number of software ‘release’
and test iterations to provide flexibility to
meet the recognized volatile needs of the
business environment. In general analysts
and developers believe this methodology of-
fers all the main benefits of a RAD type ap-
proach and is suited to the uncertainty of, and
continually changing business requirements.
To that extent a structured RAD involves
prototyping and iterative delivery while
keeping tabs on the problems of lack of rigor,
creeping scope and overrun that are per-
ceived as associated with an undisciplined
RAD and an iterative development life cycle.
The method uses the same main features i.e.
workshops, time-boxing, prototyping, inten-
sive user involvement, iterative development
and incremental delivery, which they main-
tain are increasingly used for system func-
tionality development. Analysts and develop-
ers believe that a major benefit of an iterative
approach to development is that it affords
early visibility of the system being devel-
oped. As such early validation of the system
by the users and the business analysts pro-
vides the flexibility to incorporate user feed-
back and handle any new or changing re-
quirements within the volatile business envi-
ronment – a key goal of the RAD approach.
A useful example to give at this stage is that
of the development process of a proprietary
structured equity derivatives system’s devel-
opment cycle. In the case of a given IB it
took 4 attempts, of which 3 failed over a pe-
riod of about 7-8 years, until the 4th attempt
has been successfully implemented over a
further 7 year period. The reason why the
first 3 attempts failed have been varied but it
generally had to do with the fact that analysis
and development assumed that the needs of
end users are already understood and all that
is needed is a good quality product that needs
to be fully developed and deployed across the

136 Informatica Economică vol. 15, no. 4/2011

firm. The problems in each cases had to do
with the fact that the multitude of, sometimes
individual, needs could not be estimated in
the analysis and specification phase and in-
variably the systems developed failed to meet
the requirements of users and, having already
overrun their budgets, lost sponsorship and
failed to be successfully terminated. The rea-
son why a 4th attempt has been successful has
been exactly because a RAD type approach
has been used in which a lower spec version
of the system has been developed and de-
ployed to less demanding users and functions
and then gradually enhanced over years of
development to include further complex
functionalities until finally succeeding in
eliminating the legacy system. This was a
major triumph for a RAD type approach in
developing trading systems.
In general as a systems development ap-
proach RAD has both critics and supporters
whose opinions, in some cases, are funda-
mental to individual philosophies and percep-
tions of this method’s rationale. Existing lit-
erature presents particular themes of discus-
sion within the RAD arena and a prominent
area of debate concerns the scalability of
RAD across large and complex environ-
ments. While a fair observation is that across
the software development industry the lack
of provenance is reflected by the limited
availability of published material, there is
substantial reporting of its application and
considerable debate about its appropriateness
for different types and sizes of systems de-
velopment. (Osborn 1995, Beynon-Davies
1999, 2000). Also important to note is that
RADs origins as a development process is
fair to be placed more within a commercial
development arena than an academic one. As
such literature considers it more appropriate
for small to medium simple, highly interac-
tive development projects rather than for en-
vironments that are also computationally
complex even if the case mentioned before
proves that is not necessarily the case. In
general it is observed that RADs success is
linked to the project management approach,
level of management commitment, degree of
end-user involvement and the ability of the

team to make fast authoritative decisions
(Beynon-Davies 1998). Literature also sug-
gests that RAD projects necessitate cultural
and managerial changes because people are
required to behave in a different way than in
the more structured traditional environments.
It is therefore important to note that without
radical shifts in organizational attitudes and
structures and peoples’ mindsets many pro-
jects may fail because the change to new
methodologies, methods and techniques did
not fit within the culture (Hirschberg 1998,
McConnell 1996). It can further be observed
that the potential of a RAD development and
delivery approach to meet information sys-
tems requirements in uncertain and volatile
business settings of complex system devel-
opment environments is questioned. Such
critics advocate that the need for high levels
of user involvement, stakeholder collabora-
tion, lack of project control and rigor are ma-
jor issues to its success (Ritu 2002, Martin
1991, Osborn 1995, Beynon-Davies 1996,
2000, Elliott 1997, Cross 1998, Boehm 1999,
Highsmith 2000). Our personal experience
shows that a RAD process fits well IB trad-
ing systems development, if mainly because
of the difficulty in finding alternative suitable
methods of implementing solutions for such
systems.

2 RAD – The Search for the Optimal
Method
Overtime many software architects have been
preoccupied with the search for the optimal
development method which would allow op-
timal balance between all elements contrib-
uting to the process, including analysis,
know-how, programming skill sets, formal
specification and prototyping methods and
the many others that need not be enumerated
in an exhaustive manner. For RAD one of the
possible strategies is to make an investment
upfront into specific frameworks, these could
be basic fundamental ones, such as using
high level languages, to using third party li-
braries, such as boost, or most of the case in
the IB context the use of dedicated APIs pro-
vided by internal or third party systems
which allow a modularized approach and

Informatica Economică vol. 15, no. 4/2011 137

RAD type enhancements to existing systems
functionalities. Or in some cases even allow
implementing core type functionality based
on a modular architecture of already existing
systems. These systems tend to be preferred
in fact in an IB context.
To continue on the IB context what tends to
be the preferred RAD type approach is to de-
velop internally in the IB, or indeed adopt ex-
ternal systems, which offer this modular type
capability and come equipped with a fully
transparent API which offer access to many
if not all capabilities of the system. In this
way many systems needs can be catered for
either by modifying and adapting existing
modules using this API or implementing new
ones which mostly extend the system, with-
out the need for “reinventing the wheel” and
implementing new systems infrastructures
thus keeping a good watch on costs and con-
sistency of the systems architecture. In order

to achieve this however much care is needed
to ensure that generally geographically dis-
persed teams that need to cater for often di-
verging needs maintain consistency through
communication and use of common tools.
This type of architecture is generally
achieved only at advanced stages of devel-
opment in the lives of IB organizations after
having gone through multiple painful expan-
sionary and realignment cycles. In Fig. 1 can
be seen a high level geographical consistent
system deployment. By comparison it is pos-
sible that IB will have different systems im-
plemented in different locations which all
will require dedicated processes involving
usage, deployment and integration, all of
which greatly increase the complexity and
cost of the operations. Hence the importance
of consistency while also catering for diversi-
fication is paramount in such organizations.

London

Single Stock
Trading L

Basket
Trading L

Derivatives
Trading L

Cash Operations L Deriv Ops L

Back Office L

Hong Kong

Single Stock
Trading HK

Basket
Trading HK

Derivatives
Trading HK

Cash Operations HK Derv Ops HK

Back Office HK

New York

Single Stock
Trading NY

Basket
Trading NY

Derivatives
Trading NY

Cash Operations NY Derv Ops NY

Back Office NY

Fig. 1. Geographical System Consistency

In order to correctly place the usefulness of
RAD we need to clarify which are the differ-
entiating factors from a methodology per-
spective that ensure this approach has strong
chances for success. Formal requirements are
needed to establish a clear definition of tasks
as well as being used to communicate sys-
tems requirements among the user and de-
velopers. These requirements nee to include

system functions, performance goals, sched-
ule and cost estimates. Requirements need to
include design features, performance goals,
and schedule and cost estimates. The use of
the Software Engineering Institute's (SEI)
Capability Maturity Model (CMM) may be
an important resource in suggesting what
should be done by having a well defined and
well understood process. An important goal

138 Informatica Economică vol. 15, no. 4/2011

of RAD is to keep the time between design
and delivery as short as possible. As such the
use of cost estimators such as the COCOMO
model and PERT charts for ex. to stay on the
critical path are highly encouraged
(Hirschberg 1998).
One of the important factors to focus and
keep in mind is that for a RAD approach to
work the firm needs to have a continuous
high quality production environment. Gener-
ally the best way to approach RAD is with a
team of users and developers who communi-
cate effectively and can successfully develop
products with well established schedules and
within agreed costs. This is one of the most
important factors in implementing RAD is
the experience of at least part of the person-
nel involved. In order to ensure that such an
approach works at the management level
there should be a constant effort to eliminate
or reduce tasks that are not necessary, help
streamline activities and maintain focus. A
well trained and collaborative team is im-
portant in RAD and essential for success.
The team should have a well formed core
which collaborates in setting priorities and in
agreeing planning. Also this core is important
to me constant for the team across the life of
the project, any significant changes being
certain to impact the delivery. Multiple as-
pects of the process need to be taken serious-
ly and considered within the team with in-
creased importance given to quality and con-
figuration management, monitoring and
SDLC forms being in place to aid continuous
production and reduced maintenance cycles.
One of the problems that IB face is in estab-
lishing such teams given that experienced re-

sources are often employed in well estab-
lished activities and sourcing them externally
tends to involve considerable time and mon-
ey. At the same time once resources are se-
cured an important aspect is the retention of
the core team and to achieve that motivation
is an important consideration.
Rapid application development tends to use
relatively small teams of about 4-6 people
who develop and test the new application.
The team creates a specification for the ap-
plication followed by simulations of proto-
types. A working prototype in a relatively
high level language/environment is created
prior to coding the initial version. RAD often
involves creating many versions of the appli-
cation, as per the RAD model in Fig 2. Stay-
ing on schedule is of great importance. To
achieve this users and developers use a pro-
cess of iterative prototyping in which a struc-
tured process is repeated until a usable appli-
cation is created. The steps involved can be
generally stated as:
• Building of a working prototype
• Reviewing the prototype
• Beta testing the prototype
• Meeting between developers and custom-

ers to work out kinks in the prototype
• “Timeboxing” needed changes in proto-

type
The RAD process can vary in the balance be-
tween speed and quality depending on the ul-
timate project requirements. The faster the
end product is needed, generally, the greater
the sacrifice in product quality. Also, faster
application development generally translates
into higher development costs.

Fig. 2. RAD Model

Informatica Economică vol. 15, no. 4/2011 139

Thus, it is obvious that use of RAD involves
situations when schedule and deployment are
overriding factors, especially in comparison
to quality, performance, and development
cost. An example of such a situation would
be a case in which a company desires to be
first when introducing a product to the mar-
ket. Another example would be products that
must address rapidly changing environments.
In such cases, the situation may change by
the time an application is developed using
slower, more traditional processes. Such con-
siderations are very important in the context
of IB and trading especially given that the
environment is a very dynamic one and mar-
ket conditions vary greatly which means that
the need for timely and suitable solutions is
paramount.
This is why RAD, which facilitates a greater
collaborative atmosphere, as the testing and
reviewing process is more fluid and evolu-
tionary, seems to be a natural fit for IB envi-
ronments. In more conventional processes,
user feedback is used only for completely
finished products. With RAD, users are in-
volved throughout the prototyping phase, and
as adoption is a make or break factor in this
case this aspect is also very important.
Important to notice that due to the basic de-
sign processes involved, RAD products tend
to be more portable, making them easier to
scale and redesign. It is easier to quickly so-
licit and implement feedback and suggestions
because of the prototyping model. If time re-
quirements translate into money, RAD can
sometimes result in lower costs.
At the same time some pitfalls need to be
avoided as the applications tend to be less ef-
ficient and have more bugs. They may have
reduced features and performance due to per-
sonal preferences of users involved. The pro-
fessional look and feel may be lacking due to
the abbreviated time spent on development as
well as the potentially smaller user base con-
sulted.
In general for the IB development context
RAD tends to be a suitable approach. This is
because RAD is most often suited to business

and other environments in which change
happens rapidly.
3 How to make RAD work in the context
of IB Systems Development
It is useful to consider the main types of
RAD approaches as well as the critical strat-
egies that may be implemented to optimize
the use of RAD within IBs. To start from we
can begin from the main RAD forms present-
ed by Barry Boehm (Boehm 1999) at a high
level and delving specific aspects when con-
sidered for IBs.
One of the most frequently encountered
forms of RAD is dumb RAD. DRAD occurs
in general when a decision-maker sets an ar-
bitrary short deadline for completing a soft-
ware project. While this does indeed tend to
happen quite often it is most destructive and
should be avoided at most costs. In the IB
environment however such projects do occur
and people involved with them tend to have
significant problems. This is why a certain
level of experience will greatly help in these
situations and why saying “no” is so im-
portant in this environment.
Another form of RAD involves generator
RAD in the form of using application genera-
tors such as spreadsheets, fourth-generation
languages for business or domain-specific
languages for finance for ex. This form may
be applied with consistent success mainly
when portions of the application domain are
well bounded and mature such as when using
an application API for example. The main
problem for GRAD is scalability as often the
solutions generated do not manage to go be-
yond a relatively limited level of efficiency
and complexity.
A third form of RAD is composition RAD
which uses small “tiger teams” to quickly
write a small to moderate application in a
relatively low timeframe, say 3 to 5 months.
Such applications tend to be built using ap-
plication domain class libraries and large
components such as networking packages,
GUI builders and frameworks, database
management systems and distributed mid-
dleware. CRED is more scalable than GRAD

140 Informatica Economică vol. 15, no. 4/2011

but it is still possible to have limitations
mainly in terms of competitive advantage.
Implementing full-scale RAD requires the
implementation of several effective methods
for reducing cycle time. When software de-
velopment is considered as a network of
tasks along the line of a development time-
line we can determine the possible sourcing
of savings along the critical path.
• Eliminate tasks
• Reduce time per task
• Avoid single-point task failures
• Reduce backtracking
• Streamlining activity networks
• Increase the effective workweek
• Acquire better people
• Transition to a learning organization
In the end it is the role of management to en-
sure that the right type of RAD is used for
the project at hand. As in the case of DRAD
sometimes that means the strength to say
“no” to upper management or user communi-
ty. In general if these strategies are kept in
mind and considered RAD is an effective
method that can be successfully used in the
context of IB systems development.

4 RAD Implementation of a Gamma
Hedging Spreadsheet using GRAD
An example of using GRAD is a spreadsheet
based solution for an otherwise relatively
complex business problem, in this case
gamma hedging of index options on major
indexes. The solution involved required the
availability of pricing information, or-
der/execution information, position infor-
mation and needed to implement the ability
to react to this information in a timely and
correct way. A classic approach would have
involved development or reuse at a basic lev-
el of the modules implementing this func-
tionality, developing a client/server or fat-
client approach in a relatively low language
programming environment and as a result
would have taken a long time and higher
costs to implement. However, a spreadsheet
based solution (see Fig. 3) with prices
sourced directly from Bloomberg or Reuters
using third party systems combined with an
Excel API for the main order/execution and
position keeping system implemented for the
IB helped provide a quick solution that re-
lieved workload for users and also relieved
developers of the time pressure in developing
the long term solution.

MS Excel

OMS API
BBG /

Reuters API

OMS
(order/execution, position

keeping)

Gamma Hedging Spreadheet

Bloomberg / Reutes Exchange

Fig. 3. System diagram for the Gamma Hedging Spreadsheet

Informatica Economică vol. 15, no. 4/2011 141

5 RAD Implementation of a Basket Trad-
ing System
A use case for RAD is the way a Basket
Trading System information system devel-
opment process has been conducted by a me-
dium sized software development company
for a partner and beneficiary bank, both
based in Japan.
To begin with we will use a brief description
of the functionalities a basket trading system
needs to implement and use:
Several types of existent events contribute to
a basket trading system:

• market information events such as
quote data
(bid/ask/last/high/low/close),

• trade events (order placement/order
cancellations/order amend-
ments/execution fills),

• user driven events (clicking the
buy/sell order button,

• changing the parameters for example
the fill rate of basket portfolios,

• system events (market status, system
health states, network links).

In general the actions taken by the system in
response to these events include:

• split baskets in tranches (portions of
baskets) before sending to market,

• send/resend baskets/tranches and/or
basket/tranches remainders to market,

• cancel and replace bids/offers in the
market,

• computing individual and overall ex-
posures,

• update the latest status to the user.
Some of the features required in a basket
trading system include:

• the ability to process large amounts of
data efficiently without slowing other
system components,

• the ability to compute basic Greek
values (delta) and/or intrinsic values
for large amount of stocks/futures
within baskets instantly in real-time,

• accessing and processing ‘low-
latency’ market data from exchange
connectivity,

• support high volume trading such as
placing tens and thousands of orders
in a burst,

• an architecture to support various
placement strategies,

• a responsive GUI front end for the
traders monitoring and adjusting bas-
ket trading strategies, a customizable
GUI allowing traders to select what
they want to see and control.

The system must include safety features to
avoid potential huge losses, this may include:

• the control of limits and order size,
• a panic control to withdraw all active

orders in the market, or stop quoting
when it detects the possible mispric-
ing of its own baskets/tranches,

• the ability to monitor ‘Greeks’ and
react with auto-hedging actions and
warning alerts,

• ability to withdraw and place new or-
ders that comply with exchange regu-
lations and trading rules,

• prevention of market manipulations
that may involve regulatory and dis-
ciplinary measures against the firm in
extreme situations.

In the case of the implementation considered
both the software company as well as the
beneficiary company found themselves on
unfamiliar territory given that they both had
no prior experience in building or specifical-
ly using similar systems, but the user in this
case did have a reasonable set of require-
ments compiled, based on which to execute
this implementation.
In a first phase a classic software develop-
ment cycle has been considered. The IB has
provided a very brief functional spec, on the
back of which the software company pro-
ceeded to do the development. Given that the
functional spec left many things open to in-
terpretation and that the software company
did not have too much experience in building
such systems, the software company ended
up having to make many assumptions along
the way. The result was a difficult and rather
slow process with many recurrent iterations
and refactoring exercises which delayed the
delivery process. In the end, after a relatively

142 Informatica Economică vol. 15, no. 4/2011

long development cycle a prototype of the
system has been presented to the IB. At this
stage it became clear not only that the proto-
type satisfied only in part the original func-
tional specification but also that the specifi-
cations for the IB have moved on and have
now developed and became increasingly
more stringent, also based on the increase
understanding of the IB personnel, with re-
gards to the systems functional requirements.
As a result the prototype was considered less
functional than required, was not used for pi-
lot or production, the functional spec was
further detailed by the IB, and the software
company went back to development based on
this new specification.
In the second phased also the classic devel-
opment approach was considered, this time
with more detailed specs and with similarly
difficult development and refactoring cycles.
The second time round the result was similar
in that once the second phase implementation
was presented to the IB the product still did
not satisfy user requirements for a variety of
factors mainly involving a divergence in the
fine details of the systems implementation
from an end user perspective. As a result the
product was again not accepted and increased
frustration was observed on the IB side.
In order to reach a compromise and manage
to steer the implementation on the right track
the IB and the software company decided to
change the development method and adopt a
RAD type development. The way this was
implemented included a number of pragmatic
actions:
• The development company was relocated

on the IB site
• IB personnel has been given access to all

the development, testing and QA phases
of the product

• Continuous functional spec revisions
have been provided by the IB and incor-
porated by the development team

• The development team has been given
access to most if not all of the internal
processes of the IB with regards to the
basket execution business

• Intellectual property rights have been
shared between IB and the software de-
velopment company

• Tight development and feedback cycles
have been maintained for the duration of
the project

The final result has been that at one stage the
IB personnel became convinced that the
product is an improvement to the processes
and systems used previously and from that
point on started to execute a portion of the
business on the new system, which has be-
come integrated in the IB flows by then. The
portion of the business executed using the
new basket trading system grew progressive-
ly larger until the entire IB basket trading
business was moved onto the new platform,
which continued to be worked on and devel-
oped at a quick pace for a number of months.
This way both the IB and software company
had a success story on their hands. The IB
had a competitive advantage compared to
other players in the market, which it main-
tained and held for a period of almost a year,
which is a relatively long time in the indus-
try. The software company had the intellec-
tual property rights for a system that has be-
come desirable by many competing IBs who
wished to have it implemented.
The IB ensured return on their investment
through the competitive advantage it held for
a give time.
The software development company made a
significant return in repeat license sales and
implementations to a good number of other
IBs.
Thus even if the initial costs were not bal-
anced out for either the IB nor the software
development company during the course of
the project their respective returns on in-
vestment were factored at many multiples of
the initial investment for their mutual benefit.
Had the development method stayed the clas-
sic one of specification-implementation with
relatively long periods between them as in
the first two phases it is more likely that the
project would have been abandoned by one
party at a given point. Once the RAD method
started to be used however both parties have
seen a clear improvement in communication

Informatica Economică vol. 15, no. 4/2011 143

and delivery at all levels which ultimately
lead to a mutually successful outcome.

6 RAD inspired Modular Basket Trading
System Architecture
An architecture diagram of the resulting bas-
ket trading system is presented in Figure 4

and shows the main components which have
been used when implementing the system us-
ing the RAD method: many of the core com-
ponents have been reused across the line of
systems implemented by the software com-
pany (Ziman, 2000).

Core Services

Dynamic Data

Calculation Engine & Pricing
Models

Dividends

Yield Curves

Manual Update Data Feeds

Instrument Static Data

Order Management System

Database
Exchanges

System Monitor

Underlying Spot Prices

User Actions

Basket Trading Application

Fig. 4. Basket Trading System Architecture Diagram

In order to support the functionality of the
Basket Trading System several components
have been developed including:
• Basket Trading GUI – heavy client in-

corporating all the information across the
system allowing tracking of orders execu-
tion and status monitoring, performance
tracking and so on

• Order Management System – core com-
ponent responsible for tracking of or-
der/execution and position related infor-
mation over the life of the orders

• Calculation and Pricing Module – core
component required to calculate the theo-
retical values of non-cash products used
for trading (such as futures in the context
of basket trading). To facilitate RAD de-
velopment third party available libraries
have been used, these being then replaced
with proprietary ones after the first suc-
cessful implementation phase.

• Exchange interfaces – native exchange
communication adaptors implemented for
all required exchanges

• Instrument static data interfaces – sourc-
ing static data from sources such as
Bloomberg data service and Reuters for
equities and futures instruments defini-
tion

• Dynamic data interfaces – storing the
pricing parameters required to calculate
theoretical prices for futures and forwards
(dividends, yield curves)

• Market and Data feeds – sourcing real
time market data from Bloomberg and
Reuters

Several downstream feeds have also been
provided for integration with the companies
processes:
• Risk Feed – provides risk data to the risk

department. Generally includes instru-
ment definition, main pricing parameters

144 Informatica Economică vol. 15, no. 4/2011

for underlying and derivatives as well as
calculated Greeks (delta, gamma, vega,
theta, rho).

• Operations Feed – Provides all the rele-
vant information for the operations de-
partment to be able to execute any actions
required after trades are executed. This
generally includes all information static
data as well as some pricing information
such as market and/or theoretical prices
for derivatives instruments and execution
details (size/price) for trades.

• Finance Feed – Provides all the relevant
information for the finance department to
be able to evaluate the prices of the totali-
ty of the positions that the issuer holds re-
lated to the basket trading business. This
generally includes all information static
data as well as all pricing information
such as market and/or theoretical prices
for derivatives instruments and execution
details (size/price) for trades.

• Credit Feed – The feed generally in-
cludes all information required to allow
an estimate of the credit liabilities of the
issuer.

A dedicated data model has been implement-
ed extending the overall systems data model
(which also implemented other functions for
single stock trading, derivatives trading and
so on) and included information on:
• instrument static data definition (underly-

ing and warrants)
• user related information
• configuration information
• client information
• order/execution information
An overall system monitor has been imple-
mented ensuring:
• System availability - infrastructure is

working and has enough resources ex.
space in the database is adequate and all
processes are working

• All dependencies are accounted for – all
feeds are functioning ex real time pricing,
instrument data feeds and others

• All parameter calculations are working
within parameters

• Order/Execution functions are available
and work within accepted latency param-
eters

7 RAD in the context of Distributed Devel-
opment for Global Implementation
In the case of large IBs it is often the case
that more than one system executing a given
set of functionalities exists across the multi-
ple locations where the bank activates. As a
result in these cases these systems tend to be
purpose built for the given location and its
specific set of challenges and requirements. It
is more often than not the case that once a
use/development cycle passes (usually 3 to 5
years) the IB takes on consolidation work
leading to conscious efforts to remove one or
more of the existing systems and attempting
to standardize on a single one, as presented
earlier in the introduction. Generally these
cycles can be addressed in a well defined
way that can also use RAD type approaches.
A possible way to achieve this is to have
consciously assumed large scale projects in a
single location and then in fairly short time
after the first phase implementation in the
chosen location, or even before that, have a
2nd and 3rd project team trained also using a
RAD type approach, and have these teams
then made responsible for the implementa-
tion of the system in their respective location.
In general the first core team will continue to
drive the main specification/development cy-
cle but the local teams will be well equipped
to bring their solid contribution to the project
and ensure that no relevant requirements are
left out for the location they are responsible
for.
The RAD implementation need not neces-
sarily mean that the project needs to be de-
ployed with a distributed geographical infra-
structure except in cases where such re-
quirements are mandatory. For example in
the case of order/execution systems global
integration may be required to share market
integration (ex futures trading business) but
in the case of back office systems global in-
tegration is only required for product sets that
require global aggregation.

Informatica Economică vol. 15, no. 4/2011 145

8 Conclusion
This paper presents a brief description of the
RAD methods used in the context of IBs
trading systems development, explains in
some detail what RAD methods are, what are
their main features, traits, characteristics and
pitfalls and how may they be used in the con-
text. Care is given to present the main ways
in which RAD differs when compared with
some other methods and clearly states the
advantages that RAD methods present in for
IB systems development. The paper shows
that RAD methods are in fact very well suit-
ed to trading systems development in particu-
lar within IBs due to the relative difficulty in
determining and capturing correct system
functionality details and the fact that spon-
sorship and adoption are two major require-
ments for any system offered to users, and
mainly the ones involved in demanding areas
of the business such as trading.
Considerations and examples are extracted
from literature and contrasted with the IB
context, showing that even if there seems to
be a general consensus that RAD methods
tend to be suitable for small to medium sized
projects in fact within IBs RAD methods
may well suit large sale systems as well due
to the close interconnections that form be-
tween users and developers, mainly so in the
case of internally developed systems. This is
also one of the reasons why third party sys-
tems are mainly only considered in the case
of well established market leaders where in-
ternally developed alternatives have no or lit-
tle potential to provide a competitive ad-
vantage. It is clear from the authors experi-
ence that trading systems implemented with-
in IB organizations continue to be given great
importance and are being considered in many
areas of the business as having the potential
to facilitate or create businesses. This is es-
pecially true for front office type applications
where a possible edge compared to competi-
tors is always sought after and tends to be in-
vested in. Due to the time-to-market criticali-
ty of such systems RAD methods emerge as
a very strong and viable paradigm that IBs
tend to adopt. The paper shows that where
relevant distributed RAD development

should also be considered to ensure con-
sistency on a global scale within IB organiza-
tions.

References
[1] A. Ritu, P. Jayesh, T. Mohan and J.

Lynch, “Risks of Rapid Application De-
velopment,” Communications of the
ACM, Vol. 43, Issue 11, 2002, pp. 177.

[2] P. Beynon-Davies, H. Mackay, R. Slack,
D. Tudhope, “Rapid Applications Devel-
opment: the future for business systems
development?,” Proceedings of BIT96
Conference, November 7th, 1996, Man-
chester Metropolitan University.

[3] H. Berger, P. Beynon-Davies and P.
Cleary, “The utility of a rapid application
development(RAD) approach for a large
complex information Systems develop-
ment ,” The 13th European Conference
on Information Systems, ECIS 2004, Tur-
ku, Finland, June 14-16, 2004.

[4] P. Beynon-Davies, “Ethnography and In-
formation Systems Development: Eth-
nography of, for and within IS develop-
ment,” Information and Software Tech-
nology, Vol. 39, 1997, pp. 531-540.

[5] P. Beynon-Davies, Rapid Applications
Development (RAD), Briefing Paper,
Kane Thompson Centre, University of
Glamorgan, 1998.

[6] P. Beynon-Davies, C. Carne, H. Mackay
and D. Tudhope, “Rapid application de-
velopment (RAD): an empirical review,”
European Journal of Information Sys-
tems, Vol. 8, 1999, pp. 211-223.

[7] P. Beynon-Davies, H. Mackay, D.
Tudhope, “It’s lots of bits of paper and
ticks and post-it notes and ….. a case
study of a RAD project,” Information
Systems Journal, Vol. 10, 2000, pp. 195-
216.

[8] B. Boehm, “Making RAD work for your
Project,” IEEE Computer, March, 1999,
pp. 113-117.

[9] S. E. Cross, “Toward Disciplined Rapid
Application Development,” Software
Technical News, 1998, Available at:
http://www.dacs.dtic.mil/awareness/enesl
etters/technews22-1/disciplined.html

146 Informatica Economică vol. 15, no. 4/2011

[10] E. Elliott, “Rapid Applications Devel-
opment (RAD): an odyssey of infor-
mation systems methods, tools and tech-
niques,” 4th Financial IS Conference,
1997, Sheffield Hallam University, U.K.

[11] A. Gerber, A. Van der Merwe, R. Al-
berts, “Implications of Rapid Develop-
ment Methodologies,” CSITEd 2007,
Mauritius, November 2007.

[12] M. Hammersley, P. Atkinson, Ethnog-
raphy – Principles in Practice,
Routledge, London, 2000.

[13] J. Highsmith, Agile Software Develop-
ment Ecosystems, Addison-Wesley, Lon-
don, 2000.

[14] M. A. Hirschberg, “Rapid Application
Development (RAD): A Brief Over-
view,” Software Tech News, Vol. 2, No.1,
1998, pp. 1-7.

[15] J. Martin, Rapid Application Develop-
ment, MacMillan, New York, 1991.

[16] S. McConnell, Rapid Development –
Taming Wild Software Schedules, Mi-
crosoft Press, Washington, 1996.

[17] C. S. Osborn, “SDLC, JAD and RAD:
Finding the Right Hammer,” Centre for
Information Management Studies,
Working Paper, 1995, pp. 95-107.

[18] D. Tudhope, P. Beynon-Davies, H.
Mackay and R. Slack, “Time and repre-
sentational devices in Rapid Application
Development,” Interacting with Comput-
ers, Vol. 14, No. 4, 2001, pp. 447-466.

[19] J. L. Whitten, L. D. Bentley, K. C.
Dittman, Systems Analysis and Design
Methods. 6th edition, 2004, ISBN
025619906X

[20] I. Ziman, “Basket Trading System Im-
plementation, Dresdner Kleinwort Ja-
pan,” Internal Documentation, 2000.

Iosif ZIMAN is Nomura Principal Investments Hong Kong’s head of tech-
nology since 2008. He has spent the past 15 years in Asia as a technology
professional with a wide range of expertise across trading systems areas in-
cluding order execution, risk management, operations and control areas
across equities and fixed income. Mr. Ziman joined Lehman Brothers Japan
in 2004 where he lead equity derivatives trading technology teams most no-
tably implementing the suite of the company’s next generation’s equity de-

rivatives structured products risk management systems. From 2000 he joined Dresdner
Kleinwort Japan where he has been responsible for cash and portfolio trading technology and
implemented the firm’s warrant market making platform for Japan. Before 2000 he spent 3.5
years with Fusion Systems where he has been the lead for the FOX (Fusion Order eXecution)
system which has been implemented by more than 15 major investment banks in Japan and
Asia region (including Goldman Sachs, Morgan Stanley, JPMorgan and others) to the extent
that in the early 2000’s about 30% of the Tokyo Stock Exchange volumes went through the
system’s various implementations. Mr. Ziman holds a B.S. (1994) and a M.Sc. (1995) in
Computer Science from the Technical University of Cluj-Napoca, Romania.

